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1 Introduction
We seek to evaluate the integral

𝐼 = ∫
2

0

1

√1 + sin2(𝑥)
𝑑𝑥 (1)

This integral does not have an elementary closed-form solution. It is an elliptic integral1. Therefore,
we must use numerical methods. We compare the Trapezoidal rule and Gaussian quadrature
in terms of accuracy and computational efficiency.

2 Numerical Methods

2.1 Trapezoidal Rule

The composite trapezoidal rule approximates the integral as:

𝐼 ≈ ℎ
2

[𝑓(𝑎) + 2
𝑛−1
∑
𝑖=1

𝑓(𝑥𝑖) + 𝑓(𝑏)] (2)

where ℎ = (𝑏 − 𝑎)/𝑛 is the step size.

2.2 Gaussian Quadrature

Gaussian quadrature uses optimally chosen nodes and weights:

𝐼 ≈
𝑛

∑
𝑖=1

𝑤𝑖𝑓(𝑥𝑖) (3)

For smooth functions, Gaussian quadrature achieves much higher accuracy with fewer function
evaluations, see e.g., Golub and Welsch (1969) and Cenanovic, Jansson, and Jonsson (2026).

1https://en.wikipedia.org/wiki/Elliptic_integral
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Figure 1: Convergence comparison: error vs number of points for both methods.

Table 1: Points required and computation time to achieve error < 10−10.

Method Points Required Time (�s)

Trapezoidal 22602 209.3
Gauss-Legendre 12 202.7

3 Conclusion
Gaussian quadrature dramatically outperforms the trapezoidal rule for this smooth integrand. To
achieve an error below 10−10, trapezoidal rule requires thousands of points whereas Gaussian rule
requires only 12 points. See Figure 1 for the convergence comparison and Table 1 for the numerical
results.

This demonstrates the power of Gaussian quadrature for smooth functions, where it achieves
exponential convergence compared to the algebraic (𝑂(ℎ2)) convergence of the trapezoidal rule.
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